Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2026
-
Abstract Droplet impact on substrates is the cornerstone of several processes relevant to many industrial applications. Imposing substrate oscillation modifies the impact dynamics and can, therefore, be used to control the ensuing heat, mass, and energy transfer between the substrate and the impacting droplet. Previous research has shown that substrate oscillation strongly influences the spreading behavior of the droplet. In this study, we extend this understanding to examine how substrate oscillations can further modulate the retraction dynamics of the droplet, consequently affecting its long-term behavior, with a particular focus on induced jetting and subsequent breakup. We systematically examine the breakup of jets formed by the recoiling droplet through experimental investigations across a range of oscillation frequencies and amplitudes. Our findings reveal two distinct jet breakup modes: early and late, each governed by different time scales. Subsequently, we present a mechanistic description of the jetting process. Furthermore, we derive a simple scaling analysis based on energy balance to identify the critical condition required for jet breakup. Finally, we compare the experimental data with the scaling analyses to show its efficacy.more » « less
-
The local interactions between the flame-front and turbulence control the dynamics, morphology, and propagation of a premixed turbulent flame. To investigate such complex dynamics of a flame–turbulence interaction, we present an experimental exposition of a premixed turbulent Bunsen flame. Several quantities have been evaluated to assess the flame–turbulence interaction. We first measured the statistics of the flowfield adjacent to the flame and compared it with the cold flow. This allowed us to evaluate the effect of the flame on the upstream turbulence. Subsequently, we performed statistical analyses of the local values of various stretch rates and quantified how their distribution changes with turbulence intensity and flame temperature. We also evaluated the pairwise relation among various stretch rates to assess their dependence on each other. Finally, we used flame particles to evaluate the Lagrangian evolution of stretch rates conditioned on flame-fronts. All the analyses presented in this work point out Karlovitz number as a key factor in determining the flame–turbulence interaction. Specifically, we observe a stronger influence of turbulent eddies on flames with increasing Karlovitz number, as evidenced by the reduced effect of flame on upstream flow, wider probability distribution functions of stretch rates, and increased persistence timescales for stretches.more » « less
-
Droplet impact on oscillating substrates is important for both natural and industrial processes. Recognizing the importance of the dynamics that arises from the interplay between droplet transport and substrate motion, in this work, we present an experimental investigation of the spreading of a droplet impacting a sinusoidally oscillating hydrophobic substrate. We focus particularly on the maximum spread of droplets as a function of various parameters of substrate oscillation. We first quantify the maximum spreading diameter attained by the droplets as a function of frequency, amplitude of vibration, and phase at the impact for various impact velocities. We highlight that there can be two stages of spreading. Stage I, which is observed at all impact conditions, is controlled by the droplet inertia and affected by the substrate oscillation. For certain conditions, a Stage II spreading is also observed, which occurs during the retraction process of Stage I due to additional energies imparted by the substrate oscillation. Subsequently, we derive scaling analyses to predict the maximum spreading diameters and the time for this maximum spread for both Stage I and Stage II. Furthermore, we identify the necessary condition for Stage II spreading to be greater than Stage I spreading. The results will enable optimization of the parameters in applications where substrate oscillation is used to control the droplet spread, and thus heat and mass transfer between the droplet and the substrate.more » « less
-
We investigate the dynamic characteristics corresponding to the structural fluctuations of a cantilever suspended in a turbulent flow. To investigate the intricate dynamics of the flow–structure interaction, first, we explore the ability of network analysis to identify the different dynamic states and probe the viability of using quantifiers of network topology as precursors for the onset of limit-cycle oscillations. By increasing the Reynolds number, we observe that the structural oscillations, measured using a strain gauge, transition from low-amplitude chaotic oscillations to large-amplitude periodic oscillations associated with limit-cycle oscillations. We characterize the dynamic states of the system by constructing the weighted correlation network from the time series of strain and identifying the network properties that have the potential to be used as precursors for the onset of limit-cycle oscillations. Furthermore, we use Pearson correlation to illustrate the evolution of mutual statistical influence between the structural oscillations and the flowfield. We use this information and the Granger causality to identify the causal dependence between the structural oscillations and velocity fluctuations. By identifying the causal variable during each regime, we illustrate the directional dependence through a cause–effect relationship in this flow–structure interaction as it transitions to limit-cycle oscillations.more » « less
-
The dynamics of an evaporating droplet in an unsteady flow is of practical interest in many industrial applications and natural processes. To investigate the transport and evaporation dynamics of such droplets, we present a numerical study of an isolated droplet in an oscillating gas-phase flow. The study uses a one-way coupled two-phase flow model to assess the effect of the amplitude and the frequency of a sinusoidal external flow field on the lifetime of a multicomponent droplet containing a non-volatile solute dissolved in a volatile solvent. The results show that the evaporation process becomes faster with an increase in the amplitude or the frequency of the gas-phase oscillation. The liquid-phase transport inside the droplet also is influenced by the unsteadiness of the external gas-phase flow. A scaling analysis based on the response of the droplet under the oscillating drag force is subsequently carried out to unify the observed evaporation dynamics in the simulations under various conditions. The analysis quantifies the enhancement in the droplet velocity and Reynolds number as a function of the gas-phase oscillation parameters and predicts the effects on the evaporation rate.more » « less
-
The dynamics of a liquid droplet impacting a liquid film of different compositions is critical for many industrial processes, including additive manufacturing and bio-printing. In this work we present an exposition of droplet impact on liquid films investigating the effects of mismatch in their properties on bouncing-to-merging transitions. Experiments are conducted for two sets of liquid combinations, namely, alkanes and silicon oils. The regime maps for impact outcomes (bouncing vs merging) are created from detailed experiments with various single- and two-liquid systems. The results highlight that the two-liquid systems exhibit an additional merging regime, which is not observed for single-liquid systems. Subsequently, the scaling analyses for transitional boundaries between various regimes are revisited, and new scaling laws are proposed to include the effects of asymmetry in the droplet and film properties. Finally, the experimental results are used to assess the performance of the proposed scaling laws.more » « less
-
Abstract We present a phenomenological reduced-order model to capture the transition to thermoacoustic instability in turbulent combustors. Based on the synchronization framework, the model considers the acoustic field and the unsteady heat release rate from turbulent reactive flow as two nonlinearly coupled sub-systems. To model combustion noise, we use a pair of nonlinearly coupled second-order ODEs to represent the unsteady heat release rate. This simple configuration, while nonlinearly coupled to another oscillator that represents the independent sub-system of acoustics (pressure oscillations) in the combustor, is able to produce chaos. Previous experimental studies have reported a route from low amplitude chaotic oscillation (i.e., combustion noise) to periodic oscillation through intermittency in turbulent combustors. By varying the coupling strength, the model can replicate the route of transition observed and reflect the coupled dynamics arising from the interplay of unsteady heat release rate and pressure oscillations.more » « less
An official website of the United States government
